2.7 Detection Limits and Precision with Analytical Data 45
2.8 Sample Size .. 46
2.9 Mean and Variance of Spatially Distributed Samples:
Kriging .. 47

3 Theoretical Distributions: Binomial, Poisson
and Normal Distributions 61
3.1 The Binomial Distribution 61
3.2 The Poisson Distribution 68
3.3 The Normal Distribution 70
3.4 The Links Between Certain Theoretical Probability
Distributions .. 74

4 Statistical Inference: Estimation and Hypothesis Tests 77
4.1 The Central Limit Theorem 77
4.2 Estimation .. 79
4.2.1 Standard Error of the Sample Mean 79
4.2.2 Confidence Interval That Contains the Population Mean .. 79
4.2.3 Confidence Intervals by the Bootstrap Method 80
4.2.4 Estimation and Bayesian Statistics 81
4.2.5 Error Bars and Confidence Regions on Graphs 82
4.3 Hypothesis Testing .. 89
4.4 Mechanics of Hypothesis Testing 91
4.5 Further Considerations in Hypothesis Testing 92
4.5.1 Selecting H_0: One- and Two-Tailed Tests 92
4.5.2 Selecting α .. 93
4.5.3 Choosing a Test Statistic and a Sampling Distribution .. 93
4.5.4 Interpreting the Decision 94
4.5.5 Communicating the Result 96
4.6 Sampling Distributions Used in Hypothesis Tests 98
4.6.1 The t-Distribution (Comparing Means) 98
4.6.2 The F-Distribution (Comparing Variances s_1^2, s_2^2) .. 99
4.7 Multiple Independent Variables: Paired Samples
and Randomised Block Design 101
4.8 Comparing Multiple Samples:
Analysis of Variance ("ANOVA") 103
4.9 ANOVA: Identifying Important Variables
in a Multi-Variable System 106
4.10 Informal Uses of Probability to Assess "Importance" 109

5 Comparing Frequency-Distribution Curves 111
5.1 The Empirical Rule to Compare with the Normal
Distribution ... 111
5.2 Linearisation Using Normal-Probability Paper to Compare
with the Normal Distribution 111
5.3 Normal Scores to Compare with the Normal
Distribution .. 113
5.4 Standardisation of Observations to Compare
with the Normal Distribution .. 113
5.5 Cumulative Frequency Distributions 115
5.5.1 Application of Cumulative Frequency Plots
in Sedimentology .. 116
5.5.2 Interpreting Natural Processes from Frequency
Distributions ... 117
5.6 Log-Frequency Distributions; the Logarithmic
and Other Transformations ... 120
5.7 Quantified Comparison of Frequency Distributions:
Non-parametric Statistics ... 123
5.7.1 \(\chi^2 \)-Distribution and Goodness-of-Fit 123
5.7.2 \(\chi^2 \)-Distribution and Contingency Tables 126
5.7.3 \(\chi^2 \)-Distribution and Single-Sample Variance 129
5.8 Kolmogorov-Smirnov Two-Sample Test 129

6 Regression: Linear, Curvilinear and Multilinear 133
6.1 Control and Response Variables 133
6.2 Associated Variables Without Clear Control 135
6.3 Lurking Variables .. 136
6.4 Basis of Linear Regression 138
6.5 An Introduction to the Correlation Coefficient 140
6.6 Confidence Interval About the Regression Line 140
6.7 The Major-Axis Line and the Reduced Major-Axis Line ... 141
6.8 Linearisation to Facilitate Regression Analysis 141
6.9 Directly Fitting Curves to the Data 144
6.10 Multiple Regression ... 152

7 Correlation and Comparison of Variables 157
7.1 Covariance and the Correlation Coefficient (R) 159
7.2 Spearman's Rank-Correlation Coefficient (R_s) 159
7.3 Coefficient of Determination, \(R^2 \) 161
7.4 Significance of Correlation 161
7.5 Confidence in the Regression Line 162
7.6 Progress, Problems and Pitfalls
with Simple Linear Regression 164
7.7 Special Cases in Correlation 172
7.7.1 Co-linear Variables ... 172
7.7.2 The Bivariate Normal Distribution 174
7.7.3 Constant Sums, Ratios and the Closure Restraint 175
7.7.4 Pearce Element Ratios 178
7.7.5 Triangular Diagrams 178
7.7.6 Multiple and Partial Correlation 179
7.8 Multivariate Situations 181
7.9 Linear Discriminant Function Analysis (LDFA) 183
7.10 Cluster Analysis .. 184
Sequences, Cycles and Time Series

- **8.1** Runs Analysis .. 190
- **8.2** Rank Correlation .. 191
- **8.3** Markov Chain Analysis: Identifying Cyclicity 192
- **8.4** Time Series ... 194
- **8.5** Stationary and Non-stationary Behaviour 197
- **8.6** Cumulative Sum Plot (CUSUM) 200
- **8.7** Moving Averages .. 201
- **8.8** Regression Lines and Curve Fitting 203
- **8.9** Data Stacking Where the Control Period Is Predictable 204
- **8.10** Autocorrelation to Reveal Periodicity 204
- **8.11** Isolating Fixed Waveforms by Fourier Analysis 207
- **8.12** Deconvolution ... 209
- **8.13** Power Spectra of Geomagnetic Secular Variation 212
- **8.14** Time-Series Analysis of Geomagnetic Polarity 219
- **8.15** Precise, Time-Proxied Series 219

Circular Orientation Data ... 221

- **9.1** Axes, Directions or Unit Vectors and Vectors 222
- **9.2** Rose Diagrams .. 228
- **9.3** Idiosyncrasies of Orientation Data 233
- **9.3.1** Axes ... 233
- **9.3.2** Unit Vectors ... 233
- **9.3.3** Vectors .. 233
- **9.3.4** Special Characteristics of Orientation Data 233
- **9.4** Circular Statistics: No Theoretical Model Assumed 236
- **9.4.1** The Mean Orientation .. 236
- **9.4.2** Mode and Median .. 239
- **9.4.3** Descriptors of Angular Dispersion 239
- **9.5** Theoretical Orientation Distributions 241
- **9.5.1** Estimation and Significance with von Mises¹ Model 243
- **9.5.2** Estimation with small or Dispersed Samples 245

Spherical Orientation Data .. 247

- **10.1** Visualising Orientations in Three-Dimensions:
 - the Stereogram ... 247
- **10.2** Recording and Reporting Three-Dimensional Orientations 252
- **10.3** Field Measurements, Oriented Samples
 - and Associated Errors ... 255
- **10.4** Stereogram Density Contours 258
- **10.5** The Mean Orientation of an Axis, Direction or Vector .. 262
- **10.6** Theoretical Orientation Distributions
 - in Three Dimensions ... 264
- **10.6.1** Circular Concentration: Fisher Model 269
- **10.6.2** Elliptical Concentration: Bingham Model 273
- **10.6.3** Elliptical Concentration: Henry-Le Goff Bivariate
 - Normal Approximation ... 275
- **10.7** Statistical Models: Circular or Elliptical Clusters² 276
10.8 Tests for Preferred Orientation and Confidence Limits for the Mean Orientation 282
10.8.1 Tests for Preferred Orientation 283
10.8.2 Approximate Comparison of Mean Orientations with Confidence Cones 285
10.9 Symmetry Compatibility of Orientation Distributions and Their Causative Processes 285
10.10 The Fabric Ellipsoid 289
10.11 Shape of the Orientation Distribution Ellipsoid 290

11 Spherical Orientation Data: Tensors 293
11.1 Second-Rank Tensors in Geology 294
11.2 Measurement of Second-Rank Tensor Anisotropy 297
11.3 Measurement Procedures for Anisotropy 299
11.4 Interpretations of Anisotropy Using Second-Rank Tensors in Rocks and Minerals 302
11.5 Crystallographic Control of AMS 303
11.6 Property Anisotropy of a Polycrystalline Aggregate 307
11.7 Mean Tensor and its Uncertainty for Multiple Specimens 308
11.8 The Mean Tensor: Hext-Jelinek Statistics 309
11.9 Examples of Tensor Orientation Distributions and the Confidence Cones of Their Principal Axes 310
11.10 Orientation Distributions Involving Multiple Fabrics and Fabric Heterogeneity 316
11.11 Heterogeneous or Multiple Fabrics and the Mean Orientation of Sample Tensors 317
11.12 Specimen-Level Uncertainty and Its Contribution to Sample-Mean-Tensor Confidence Limits 320
11.12.1 Jelinek Statistics 320

12 Appendix 327

Appendix I: Errors in Compound Quantities 327

Appendix II: Notes on the Manual Use of Stereograms 328
Plotting Lines, Planes and Poles to Planes 328
Great Circles, Small Circles; Dip Plunge and Rake 331
Rotations: For Convenient Viewing or for Tectonic Restorations 332
Contouring 334

References 337