GENETIC DIVERSITY OF MOOSE FROM THE KENAI PENINSULA, ALASKA

Kris J. Hundertmark1, Paul E. Johns2, and Michael H. Smith2 3
1 Alaska Department of Fish and Game, Kenai Moose Research Center, 34828 Kalifornsky Beach Road, Soldotna, AK 99669; 2 Savannah River Ecology Laboratory, Aiken, SC 29802; 3 Institute of Ecology, Departments of Genetics and Zoology, Faculty of Ecology, and School of Forest Resources, University of Georgia, Athens, GA 30602

ABSTRACT: Six of 20 loci expressed in liver and muscle tissue from Kenai Peninsula moose (Alces alces gigas) were polymorphic. Average heterozygosity was 7.7%, which represents an unprecedented level of genetic diversity for moose. This level of diversity was not expected because empirical evidence from other moose populations, as well as theoretical considerations, indicated that moose exhibited low levels of heterozygosity. We propose that moose populations with low diversity reside in areas that were glaciated during the last Ice Age and that the recolonization process reduced heterozygosity, while high-diversity populations reside in areas in the proximity of glacial refugia.

ALCES VOL. 28 (1992) pp. 15-20

Analysis of genetic heterogeneity within and among wildlife populations can yield a better understanding of population processes (Smith et al. 1984) which can be relevant in a management context (Smith et al. 1976). For instance, spatial differences in allele frequencies can be used to detect breeding structure and delineate functional populations (Manlove et al. 1976). These delineations can then be used to define management area boundaries. Furthermore, incidence of phenotypic characteristics related to increased fitness have been associated with the degree of heterozygosity (H) in individuals (Johns et al. 1977, Smith et al. 1982, Cothran et al. 1983, 1987, Chesser and Smith 1987, Scribner et al. 1989). However, population heterozygosity can be diminished to varying degrees by different hunting regimes (Ryman et al. 1981); thus, maintenance of genetic variability of game species is an important management consideration.

Electrophoretic studies of proteins isolated from moose indicated a paucity of detectable genetic variability. Nadler et al. (1967) and Wilhelmson et al. (1978) found no polymorphisms in serum proteins from populations of moose in Scandinavia (A. a. alces), Canada (A. a. andersoni), and Alaska (A. a. gigas). Ryman et al. (1977) examined 23 loci and detected only one polymorphism in Swedish moose. Subsequent studies have revealed multilocus variability in A. a. alces (Ryman et al. 1980, Baccus et al. 1983) and A. a. americana (Reuterwall and Ryman 1979), but not to the extent reported for other cervids (Breshears et al. 1988, Smith et al. 1990). Our objective was to determine the level of genetic variability in a population of moose from the Kenai Peninsula, Alaska.

METHODS

Samples of liver and skeletal muscle were obtained from moose killed by highway vehicles. Thirty-one samples were collected during November 1989-March 1990 and represented 29 adults and 2 fetuses. Seven samples were obtained from fetuses collected during March-June 1988 and kept frozen until analyzed. Fetuses were sampled only when samples from the mother were not available. No samples were collected from individuals known to be a sibling, parent, or offspring of another collected individual.

The following thirteen enzyme systems representing 20 presumptive loci were examined: malate dehydrogenase (MDH-1, MDH-2), phosphoglucomutase (PGM-1, PGM-2), mannose phosphate isomerase (MPI), peptidase (PEP-1, PEP-2, PEP-3,
leucylglycylglycine substrate), malic enzyme (MOD-1, MOD-2), glucosephosphate isomerase (GPI-2), esterase (EST, β-naphthylpropionate substrate), aconitase (ACON), sorbitol dehydrogenase (SORDH), lactate dehydrogenase (LDH-1, LDH-2), amino aspartatetrasaminase (AAT-1, AAT-2), α-glycerophosphate dehydrogenase (α-GPD), and adenosine deaminase (ADA). Preparation of extracts, electrophoretic procedures and staining followed Selander et al. (1971) and Manlove et al. (1975). Allele frequencies, estimates of H, alleles per locus (A), proportion of polymorphic loci (P), and Chi-square testing of conformance to Hardy-Weinberg expectations were performed using BIOSYS (Swoford and Selander 1981). Loci were considered polymorphic if the frequency of occurrence of the most common allele did not exceed 0.99.

RESULTS

Six of 20 (P=30%) loci (MDH-1, PGM-1, PGM-2, MPI, PEP-2, and MOD-2) were polymorphic (Table 1). These loci, with the exception of MOD-2, have been reported to be polymorphic in other moose populations (Ryman et al. 1980, Baccus et al. 1983); however, no single population heretofore exhibited more than 3 polymorphic loci. Ryman et al. (1980), in a study of 18 Scandinavian moose populations, reported estimates of P ranging from 4.3-13%. Baccus et al. (1983) reported P=15.8% for Scandinavian moose. Smith et al. (1990) estimated average P for cervids as 17.4%.

One locus (PEP-2) in the present study exhibited 3 alleles, whereas the remaining polymorphic loci exhibited 2 alleles each (Table 1), yielding an estimate of A of 1.35 (SE 0.13), which is within the range exhibited by other cervids (Baccus et al. 1983, Smith et al. 1990). Direct-count estimates of heterozygosity for polymorphic loci (h) ranged from 2.6-47.2% (Table 1). Mean heterozygosity (H), including 14 monomorphic loci, was 7.7% (SE 3.4%), which was considerably greater than the inter-population mean of 2% (range 0.6-4.7%) reported by Ryman et al. (1980) and the value reported by Baccus et al. (1983) (H=1.7%) for Scandinavian moose. Smith et al. (1990) estimated H = 3.5% for cervids in general. Frequency of occurrence of heterozygotes did not deviate significantly from Hardy-Weinberg expectations (X²=0.16, d.f.=1, p=0.69).

DISCUSSION

Our data represent an unprecedented level of genetic diversity for moose and the only reported variability for A. a. gigas. Previous reports characterizing moose as a species exhibiting low to moderate levels of variability

<table>
<thead>
<tr>
<th>Allele</th>
<th>MDH-1</th>
<th>PGM-1</th>
<th>MPI</th>
<th>PEP-2</th>
<th>PGM-2</th>
<th>MOD-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>A</td>
<td>0.000</td>
<td>0.000</td>
<td>0.368</td>
<td>0.250</td>
<td>0.031</td>
<td>0.263</td>
</tr>
<tr>
<td>B</td>
<td>0.987</td>
<td>0.895</td>
<td>0.632</td>
<td>0.737</td>
<td>0.969</td>
<td>0.737</td>
</tr>
<tr>
<td>C</td>
<td>0.013</td>
<td>0.105</td>
<td>0.000</td>
<td>0.013</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>h</td>
<td>0.026</td>
<td>0.211</td>
<td>0.368</td>
<td>0.395</td>
<td>0.063</td>
<td>0.472</td>
</tr>
</tbody>
</table>

¹Abbreviations defined in text.
were based primarily on data from Scandinavian populations or from North American populations from which only a few loci were examined. It is now apparent that indices of variability in moose can vary dramatically on a large geographic scale. We believe that moose populations potentially could express even greater variability as loci not examined in this study were polymorphic in other populations (Gyllensten et al. 1980, Ryman et al. 1977).

The dramatic differences in genetic diversity between the Kenai population and others may stem from the origin of populations following the retreat of the Wisconsin ice sheet. *Alces alces gigas* originated in refugia in Beringia (interior Alaska and what is now the Bering Sea). The origin of all other North American subspecies is debatable, but whether they were derived from stocks located south of the Wisconsin glacial maximum (Klein 1965, Peterson 1955:14) or from Beringia (Cronin 1992, Geist 1985) it remains that their present range was once entirely glaciated. Recent populations residing in or near refugia likely would retain more genetic diversity than populations established at great distances from refugia through a series of founding events. Prior reports of low genetic diversity in moose dealt with populations residing in previously glaciated areas. Thus, these populations possibly experienced a loss of diversity due to genetic drift during the process of recolonizing new habitat following glacial retreat (Sage and Wolff 1986).

Moose inhabiting the Kenai Peninsula are isolated both spatially and temporally from neighboring populations. A 16-km wide mountainous isthmus connects the peninsula with the remainder of Alaska, and most moose habitat on the peninsula is not contiguous with the isthmus. Thus, any interchange of individuals likely is minimal. Had the peninsula been colonized by moose in the late 19th century, as was the commonly held belief of early explorers of the area (Lutz 1960), we would predict low genetic diversity in the population due to founder effect and inbreeding. Our data support the contention of Lutz (1960) that moose populations increased as a result of 3 documented forest fires between 1870 and 1910, prior to which they had existed at low densities in late-successional forest. This claim is supported by archaeological evidence that indicates that moose were present on the peninsula at least 2000 years ago (deLaguna 1934:13). Theoretically, such a period of relative isolation from other moose populations characterized by fluctuations in population size could lead to reduced genetic variability through drift and bottleneck effects. However, it is possible that the effective population size, even at low densities, was adequate to maintain diversity. Furthermore, Nei et al. (1975) demonstrated that reductions in heterozygosity after a bottleneck could be small if the population increased rapidly thereafter. Such rapid increases in moose populations are typical in southeastern Alaska because these populations are irruptive in nature, depending upon wildfire for creation of suitable habitat.

These data offer some insight toward prevailing theories concerning patterns of genetic variability among taxa. For instance, Harrington (1985) proposed that, among cervids, r-strategists were less variable genetically than K-strategists. However, our data lend support to the conclusion reached by Hartl and Reimoser (1988) that r-strategists can display substantial amounts of variation. Selander and Kaufman (1973) hypothesized that large, highly mobile mammals would exhibit low heterozygosity while small, sedentary types would exhibit high degrees of variation. Ryman et al. (1980) provided data for moose which seemed to discount this theory, at least at the species level, and our data further demonstrate that large, highly-mobile species can exhibit relatively great amounts of heterogeneity. Smith et al. (1990), in reviewing heterogeneity of cervids, ob-
served that boreal species exhibited the lowest average H. This observation may be true in a general sense, but it should not be interpreted as meaning that boreal species cannot exhibit high heterogeneity at the population level.

Recent studies in wildlife population genetics have examined relationships between expressions of fitness and genetic structure. Pemberton et al. (1988, 1991) demonstrated a relationship between juvenile survival, female fecundity and genotypes at specific loci in red deer (Cervus elaphus). Relationships between heterozygosity and male body size and antler characteristics (Scribner and Smith 1990), body condition of over-wintering females (Cochran et al. 1983), and conception timing (Chessser and Smith 1987) among other characteristics have been reported for white-tailed deer (Odocoileus virginianus). Hartl et al. (1990) reported an apparent association between genotypes at specific loci and the number of antler points in red deer, and Harmel (1983) provided evidence that antler size in white-tailed deer is genetically controlled. Alces alces gigas is characterized by the largest body and antler size of all mule subspecies (see Franzmann 1978, Geist 1987), which may be a result of the high genetic diversity we observed. These characteristics contribute to the fitness of individuals, and can affect an individual’s likelihood of being harvested by a hunter; therefore, they should be considered in a management context.

ACKNOWLEDGEMENTS

C. C. Schwartz provided insight and encouragement and, along with M. A. Cronin, reviewed the manuscript. J. M. Novak assisted with the statistical analysis of the data. This study was funded in part by Federal Aid in Wildlife Restoration and by a Department of Energy contract DE-AC09-765ROO-819 with the University of Georgia.

REFERENCES

Fat levels in female white-tailed deer during the breeding season and pregnancy. J. Mammal. 68:111-118.

A

18

______, C. REUTERWALL, K. NYGREN, and T. NYGREN. 1980. Genetic variation and differentiation in Scandinavian moose (Alces alces): are large mammals...
monomorphic? Evolution 34:1037-1049.

